

Manual extension Crate ECH 228 x or 328 x to

Crate ECH 238 x - UPS or 338 x - UPS with CAN-Control

The crates ECH 238x - UPS and ECH 338x - UPS are supplied with a controller for remote and monitoring control via CAN-BUS. Additionally they are supplied with a battery buffer which is able to bridge AC power failures which last less than 10s and – in case of permanent AC power shut off - will manage a definite system and module shut off procedure.

Installation

After unpacking the crate has to be installed under the described condition. The provided 16 A fuse has to be given into the fuse holder on the rear side. Now the battery buffer is activated. With AC line ON the crate is in Stand-by mode.

Technical Data version 1.											
CAN bus speed	20, 50, 100 and 125 kbit/s										
Analogue functions	ADC with 10-Bit resolution, control of supplies voltages and temperature of this crate.										
Digital functions	ON – and OFF switch of internal supply voltages via CAN-Bus in Stand-by mode										
Power-ON/OFF	Power cable connected and AC line is ON, now the crate is in Stand-by mode.										
	In Stand-by mode the internal DC supply voltages can be switched ON and OFF with help of a push button, even if no CAN-control is present.										
	In case of transient AC power failure the internal battery buffer supports the crate with voltage. After 10 sec a signal will be made in order to manage a definite switch OFF procedure. The battery is able to bridge ca. 1 min.										

CAN-Interface

The CAN-control is configurable completely via software. Herewith structures corresponding to CAN-Open (CAL-based Draft Standard 301 / release 3.0) will used.

After Power_ON-Reset the controller runs into CAN-Status "Initialisation". During this state Write access is possible to all EEPROM-cells via the sub identifier. If control is already configured (e.g. from factory), control is running into CAN-status "Pre-operational".

Only in these both states it is possible to work with services Network-Management (NMT) and Distribution - Management (DBT).

CAN-Status "Pre-operational" is necessary for the further description.

In order to allow the control of the crate via CAN-Bus, with global command "START" the CAN-Status "Preoperational" will be switched into CAN-Status "Operational":

Services	ID (with RTR=0)	DLC	DATA_1
Network - Management (NMT)			
START / STOP / RESET global	0	1	Bit $0 = 1 \Rightarrow Start$ Bit $1 = 1 \Rightarrow Stop$ Bit $2 = 1 \Rightarrow Reset$ CAN-interf. Bit $3 = 1 \Rightarrow Reset$ Controller

Now control can work via two identifier (see ID - Distribution):

1. Control (EMCY-ID)

The internal supply voltages will be controlled cyclically (V_{Meas} ca all 100 ms). The voltage control is factory fixed with $\Delta V = \pm 5\%$ given through tolerance values $V_{Trehsold}$ in an EEPROM. If the thresholds of voltage and/or temperature will be exceeding then the controller is sending a message with EMCY-ID to the Bus (send only).

Controls about EMCY-ID's are working only after the controller was setting in Operational mode with NMT-Start.

ID	R T R				١	/ol	tag	je			DATA_2	DATA_3	DATA_4	DATA_5				
EMCY- ID	0	5	0	0	0	0	0	х	х	x	ADC-	nsigned word:	ADC-	nsigned word:	xxx:	000 001 010	+ 24 V + 5 V 24V _{Battery}	= V _{Nominal 0} = V _{Nominal 1} = V _{Nominal 2}
												V_{Meas}	s resp. V _{Thr}	eshold = V _{Nor}	minal x *	ADC-v	vord / 2048	
ID	R T R	D L C		٦	Ten	np	era	itui	re		DATA_2	DATA_3	DATA_4	DATA_5				
EMCY- ID	0	5	0	0	0	0	0	х	x	x	0	T _{Meas} [°C]	0	T _{Threshold} [°C]	xxx:	011 100 101 110	(24V-DC I temperatu (Backplan temperatu	re sensor 2 e) re sensor 3 re sensor 4
ID	R T R			AC line power failure signal						DATA_2	DATA_3	DATA_4	DATA_5					
EMCY-	0	5	0	0	0	0	0	х	х	х	0	0	7	7c	xxx:	111	AC line po	ower failure

2. Subidentifier (Sub-ID)

E- command	ID	R T R	D L C	r / w	Command							DATA_n	Remarks					
Multiplex- command	Sub-ID	0	x	х	0	х	x	х	x	х	х		multiplexed DAC/ADC – work on channels of selected module (Sub-ID)					
ADC	Sub-ID	0	1	1	0	1	0	0	х	х	х		Read Access, (call from host)					
	Sub-ID	0	3	1	0	1	0	0	х	Х	Х	2 Byte ADC-word	$V_{Meas} = V_{Nominal x} * ADC-word / 2048$					
													xxx: 000 + 24 V = $V_{Nominal \ 0}$ 001 + 5 V = $V_{Nominal \ 1}$ 010 24 $V_{Battery}$ = $V_{Nominal \ 2}$					
	Sub-ID	0	4	1	0	1	0	0	х	х	х	2 Byte ADC-value	ADC-value = Temperature [°C]					
												1 Byte fan status	Bit: b0 = fan1 (DC-PS) and b1 = fan 2 to 4 Fan status in b0/1: (0: stage 1,					
Module- command	Sub-ID	0	Х	Х	1	X	х	х	х	Х	X		Use module functions of selected module (Sub-ID)					
EEPROM	Sub-ID	0	2	1	1	0	0	0	0	0	0	EEPROM-address	Read / Write access, (call from host)					
/Tolerances	Sub-ID	0	3	1	1	0	0	0	0	0	0	Data_1: EEPROM-address	Byte oriented reading of tolerances from EEPROM-address:					
													V Higher ADC- Lower ADC- threshold threshold					
													High low high low					
													+ 24 V					
	Sub-ID	0	3	0	1	0	0	0	0	0	0	Data_1: EEPROM-address Data_2: tolerance high/low	-byte oriented writing of tolerances on					

E- command	ID	R T R	D L C	r / w		С	on	nm	an	ıd		DATA_n					Remarks												
Module- commands	Sub-ID	0	х	Х	1	X	Х	х	х	Χ	X							Use module function of selected modules (Sub-ID)											
ON/OFF	Sub-ID	0	1	1	1	0	0	0	0	0	1									Read / Write Access, (call from host)									
	Sub-ID	0	3	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	х	0	0	C)	0	0	0	0	1	x=0 switched on x=1 switched off
																													Read/Write Access
ON/OFF	Sub-ID	0	3	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	х	0	0	C)	0	0	0	0	1	x=0 switched on x=1 switched off Write Access
Bit rate	Sub-ID	0	1	1	1	0	0	0	0	1	1									F	Rea	ad	۱ /	W	rite	e A	١cc	es	ss, (call from host)
	Sub-ID	0	2	1	1	0	0	0	0	1	1				Dat	ta_	0					rat ad/						ess	;
Bit rate	Sub-ID	0	2	0	1	0	0	0	0	1	1	Data_0 New bit rate: only 20, 50, 100, 125 for bit rate [kBit/s] is allowed! Write Access																	
Unit-ID	Sub-ID	0	6	1	1	0	0	0	1	1	0	3 Byte BCD-unit-no. and 2 Byte BCD-software-release																	

These identifiers will be fixed by ID - Distribution (DBT) Service:

ID - Distribution (DBT) Service	ID	DLC	DATA_1			DA	ATA_	_n			remarks		
DBT - Master - Request	2024d 7E8h (RTR=1)	0									Call from host only by connected module: message address and ID's of module		
DBT - Slave - Service	2023d 7E7h (RTR=0)	8	modaddr.	2	3	4	5	6	7	8	Message with module address and corresponding ID's		
DBT - Master - Service	2024d 7E8h (RTR=0)	8	Modaddr.		ADC EMCY :			Sub- ID		Allocate new ID's t Inhibit-time: t ≈ 15 * (ADC mux) * t ms			
DBT - Master - Service ↓	2024d 7E8h (RTR=0)	2	0x80	module-addr.							Call from host to module address: message of ID's to address		
DBT - Slave - Service	2023d 7E7h (RTR=0)	7h				8	Message with module address and the corresponding ID's						

The remote control module will be configured with help of Network-Management (NMT) Service:

Network - Management (NMT)	ID	DLC	DATA_1	remark
NMT - Slave - Service (only in initialising mode)	2025d 7E9h	2	Modaddr. (0xFF)	After stop of CAN-Status (0x20): 0x80: Operational 0x40: Pre-operational 0x20: Initialisation
NMT - Master - Service	2026d 7EAh	2	Modaddr. old	ModAdr. new, Addr. 0x80 forbidden!
Start / Stop / Reset	0	1	Bit $0 = 1 \Rightarrow Start$ Bit $1 = 1 \Rightarrow Stop$ Bit $2 = 1 \Rightarrow Reset CAN-Interf.$ Bit $3 = 1 \Rightarrow Reset Controller$	

Warning

There is no maintenance for the crate and the battery necessary. In case of no use of this crate during 6 month it is necessary to connect the crate to power, switch into ON at least for 8h to charge the batteries. The battery has to be renewed after 5 years.